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ABSTRACT 
The accurate and efficient evaluation of the Green function and its 

derivatives for a pulsating source in finite water depth is one of the 

most important aspects in wave force calculation for offshore 

structures, at the same time it is also one of the most challenging tasks 

due to the singularity in the Cauchy principal value integral and the 

oscillation behavior of the Bessel function. In this paper, a new 

integral equation is proposed in which the singular term is deducted 

from the Green function. Furthermore, the Gauss-Laguerre integral 

equation proposed by other researcher has been improved to obtain a 

new form of the equation. Using these two proposed methods, 

numerical calculations are performed for the pulsating source Green 

function and its derivatives for finite water depth. The results show 

that very good agreements are achieved between the present results 

and other published data. The precision and efficiency of the present 

methods are also investigated and compared with the series solution 

and traditional Gauss-Laguerre integral method. It shows that both of 

the new methods have better precision than the traditional Gauss-

Laguerre integral, but less efficient than the series solution. On the 

other side, the series solution would lose precision in the near-fields 

approaching zero, but the new Gauss-Laguerre integral equation could 

obtain right results. Furthermore the series solution has poor precision 

in large wave frequency and water depth in which case both of the new 

methods could obtain right results. Finally, one strategy has been 

proposed which could properly obtain the value of green function and 

its derivatives. 

1 INTRODUCTION 
The water depth is always shallow near shore and island, and 

the hydrodynamic motion and load response in shallow water 

have big difference compared with deep water depth. So it 

needs to study the wave motion and load response of floating 

body in shallow water. During computing the motion of floating 

body, the biggest difficulty lies in accurately solving Green 

function in finite water depth. Only the precise solution of green 

function and its partial derivatives in finite water depth are 

obtained, it’s possible to get the right motion response of 

floating structures. The expression of green function in finite 

water depth has two forms. One is integral form [1]; the other is 

series solution [2]. The former one has high computing 

precision; meanwhile is applicable in both near-field and far-

field, but has low efficiency. The later one has high efficiency, 

but is difficult to converge in the vicinity of the near-field, 

especially the existence of a singularity at R = 0. Therefore, for 

calculating the finite water depth Green function and its 

derivatives the researchers generally use the integral form in 

near-field, use the series solution form in far-field. In 1984 

Newman [3] gave deep discussions of solving the green 

function in finite water depth and infinite water depth, including 

integral solution and the series solution of finite water depth, 

but it did not give a specific numerical method for solving 

integral form. Li [4], Xie [5] and Liu [6] have given some 
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numerical methods to calculate the value of green function and 

its derivatives, furthernore Xie [5] and Liu [6] have shown 

some results of hydrodynamic motion or loads. The numerical 

methods of the integral form generally are divided into two 

types, one is curve fitting; the other is numerical integral 

directly. For example, the Hydrostar from BV is using 

Chebyshev polynomial fitting. Direct numerical integral is 

traditionally using Gauss-Laguerre integral (Li [4] and Liu[6]). 

Although Li [4], Xie [5] and Liu [6] have proposed some 

numerical integral methods, but the accuracy and speed of these 

methods need to be verified. The paper here has improved the 

calculating precision of the method initially proposed by Liu 

[6]. At the same time a new method is initially proposed here 

after a certain derivation. Finally the investigation on the 

accuracy among the two methods proposed in the paper and 

series solution has been carried out. Furthermore the calculating 

velocity also has been studied. The results and conclusions have 

a certain reference meaning in solving the green function and its 

derivatives in finite water depth. 

 

2 NUMERICAL SOLVING METHOD OF RADIATION 

POTENTIAL 
The boundary conditions of solving radiation potential in 

uniform finite water depth is 
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For satisfying the boundary condition of free surface, radiation 

condition in far-field and water bottom impenetrable conditions, 

the expression of Green function is adopted as follows 

Integral form [1] 
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where, H, K and   respectively are water depth, wave 

number and frequency.
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For convenience, the integral part of the principal value of 

Green function and its derivatives are as follows 
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The time-consuming of calculating the value of Green function 

and its derivatives has occupied the most time of the whole 

procedure of solving velocity potential by using BEM in 

equations (3)-(5) [7]. Thus, it’s necessary to study the numerical 

methods to solve the values of these equations. The procedure is 

shown as follows. 

2.1 Subsection Integral 

2.1.1 Value of Green Function 

For non-dimension, it introduces k kH= , H = , 

/R R H= , /z z H= , / H = , then 
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For convenience, it introduces 

( ) ( ) ( ) ( ) ( )02 e cosh 1 cosh 1 Jkf k k k z k k R − + + +   (7) 

( ) sinh coshp k k k k −                         (8) 

( )
( )( )

( )
0f k k k

g k
p k

−
                             (9) 

where 0k  is the plus root of equation tanh 0k k − = , so 
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Then 
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For ( )0 0 0 0sinh cosh 0p k k k k − = , so ( )p k  could be 

expanded at 
0k  as follows 
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The values of the both terms on the right of the above equation 

could be obtained by many numerical integral methods, such as 

Simpson, Romberg and Gauss integral. For the upper limit of 

the second term is infinite, it needs to truncate the infinite 

integral zone into finite integral zone. Here, two methods have 

been proposed, one is interval truncation method; the other is 

interval transformation.  

(1) Interval truncation method 

Introducing the following expression： 
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When 1 / epsM MI S+  , the iteration converges and stops. If 

the compute performance is enough high, it could 
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6eps 10−= . Additionally, for improving the calculating 
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Now it could obtain the value of the above expression by Gauss 

integral method. 

2.1.2 The Derivatives of Green Function 

Introducing non-dimensional variables /x x H= , / H = , 
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2.2 Gauss-Laguerre Integral method 

2.2.1 Traditional Integral method 

The traditional integral method is to isolate singularity during 

calculating the value of Green function and its derivatives and 

using Gauss-Laguerre integral method. The detailed procedure 

is as follows, here only shows the value of G0 , the approaches 

of obtaining GR and Gz have the similar way.  

Taken ( ) ( ) ( )sinh coshP k k kH kH= − , where ( ) 0P K = , then 

its derivative is 

( ) ( ) ( ) ( )' sinh cosh sinhP k kH kH kH H kH= + −   (24) 

For convenience, it introduces 

( ) ( ) ( ) ( )0( ) 2 cosh cosh JQ k k k z H k H kR = + + + (25) 

Combining equations （3）and（24）, it could obtain the 

final form of the equation (3). 
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The first term of the above expression could be calculated 

directly by Gauss-Laguerre integral method. The second term is 

exponential integral. Then 
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where wi, xi and n respectively are the weight, position and 

term number of Gauss-Laguerre integral. /i ik x H= . Ei() 

is function of exponential integral. The above expression 

is called traditional Gauss-Laguerre integral in finite water 

depth. For the oscillation of Bessel function, the 

convergence rate of the above expression is very slow. 

Generally, it needs 64 Gauss points to obtain enough 

precision; meanwhile, this method is very time-consuming 

and when ki << K，it lets ( )

( ) ( )'i

Q K

k K P K−

 is much larger 

than ( ) ( )/i iQ k P k  in high frequency. The main reason is 
( )2

e
K z H+ +

 much larger than 
( )2

e ik z H+ +
. Thus it leads to 

small value term minus large value term, then plus large 

value term. But the small value term is desired term, so it 

causes losing precision in high frequency. 

On the other side, the relative expressions only need change as 

follows during processing GR and Gz. 
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 ( ) ( ) ( )

( ) ( )
( )0 0

0

2 e cosh cosh
P.V. J d

sinh cosh

kHk k z H k H
G kR k

k kH kH

 



− + + +
=

−  

( )

( ) ( )

2

2
0

2 e
=P.V. e 1

tanh 1 e

kH

kH

kH

k

k kH

 



−

−

−

 + +
 +

− +    
  

( ) ( ) ( ) ( ) ( )3

0e e e e J d
k z H k z H k z H k z H

kR k
   + + − − + + − − + − + +  + + +

 
(30) 

( )

( ) ( )

2

2
0

2 e
P.V. e

tanh 1 e

kH

kH

R kH

k
G k k

k kH

 



−

−

−

 + +
 = − +

− +    
  

( ) ( ) ( ) ( ) ( )3

1e e e J d
k z H k z H k z H k z H

e kR k
   + + − − + + − − + − + +  + + +

 
(31) 

( )

( ) ( )

2

2
0

2 e
=P.V. e

tanh 1 e

kH

kH

z kH

k
G k k

k kH

 



−

−

−

 + +
 +

− +    
  

( ) ( ) ( ) ( ) ( )3

0e e e e J d
k z H k z H k z H k z H

kR k
   + + − − + + − − + − + +  + − −

 
(32) 

The terms without singularity in equations (30) and (31) could 

be obtained by the following expressions. 
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For the equations from (30) to (32) contain the exponential 

terms of 
( )

e
k z H+ +

, 
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, 
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, the 

direct Gauss-Lauerre integral would have the same problems 

with the method of traditional Gauss-Lauerre integral. Thus, it 

needs some special processes. Liu [6] just recognized that it 

only needs to deal with the part containing 
( )k z H

e
+ +

, but when 

ki
 has big difference with K in high frequency, the value of each 

part containing exponential would have very big difference 

which could lead to lose precision in calculating the value of 

Green function. 

The following procedure has taken 
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e
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 of G0 as example, 

the others containing exponential terms have the similar 

approaches. The expression is 
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Noting ( ) ( ) ( )2tanh 1 e kHP k k kH  −= − +   , where ( ) 0P K = , 

then its derivative is 
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( ) 22 tanh e kHH k kH  −− −                  (35) 

For convenience, introducing 
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Combining equations (34) and (35), the equation (36) becomes 
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The first term of the above expression has no singularity which 

could be evaluated by Gauss-Laguerre integral. The second 

term could be evaluated by the expression of Green function in 

infinite water depth. Then 
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where

( ) ( )0

0

e J
=P.V. d

k z

inf

kR
G k

k K

+

−  is the expression in infinite 

water depth. 

2.3 Series Solution 

The above methods of Subsection integral and Gauss-Laguerre 

integral are time-consuming. 1984 Newman [3] has shown 

when / 0.5R H  , the series solution could obtain approximate 

value by a few terms, generally the term number is integer 

of 6 /H R . For large n,  

( ) ( )/

0 e nR H

nK k R O −=                    (39) 

The convergence rate of equation (2) depends on /R H . 

Especially, when / 0R H = , the above expression would not 

converge. 

It needs to obtain the plus root of equation tan 0n nk k H + = , 

and kn is between ( 0.5) /n H− and /n H , n = 1, 2, 3… The 

roots could be obtained by dichotomy method. 

 

3 NUMERICAL RESULTS 
It is found that the value of singularity term of Green function 

has relationship with  , H, R,   and z from the above 

derivations. After a certain non-dimensional derivatives of 

Green function G0, it’s concluded that the Green function only 

has relationship with H = , /R R H= , /z z H= , 

/ H = . In order to verify the correctness of the method 

proposed in this paper, the value of Green function has been 

compared among different methods in the figures below. And 

some results from reference [8]. Additionally, the Gauss-

Laguerre integral has used 30 points in the paper here. From the 

figures, the results of Subsection integral, Gauss-Laguerre 

(traditional) integral, Gauss-Laguerre (Improved) integral and 

series solution have good coincidence with results from 

reference [8]. Thus, the two methods propose by this paper have 

very high precision. Additionally, the traditional Gauss-

Laguerre integral has high precision during R/H < 5.0, but loses 

precision during R/H > 5.0. 
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Figure 1. Green function G0
 

( H = =5.0, / 1z z H= = − , / 0H = = ) 

 The principle of Green function G0 and its derivatives varying 

by   is presented in the figures below, from which it’s found 

that when   is very large, the series solution lose precision. 

And the results show that the unstable critical point is between 

7.25 and 7.26. 
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Figure 2. Green function G0 ( / 0.5z z H= = − , / 0H = = ) 

The derivatives 0 /dG dR  and 0 /dG dx  of Green function are 

presented in the figures below for the case H =  =5.0. The 
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results show that there are good coincidence among Subsection 

integral, Gauss-Laguerre(Improved) integral and series solution. 
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(b) 0 /dG dz  

Figure 3. Derivatives of green function ( H = =5.0, 

/ 0.5z z H= = − , / 0H = = ) 

Although the results above show the two methods proposed in 

this paper and the series solution have high accuracy, these 

methods may lose precision in some special cases. It’s 

concluded that the values of Green function and its derivatives 

by Subsection integral have big difference with Gauss-

Laguerre(Improved) integral and series solution during R/H < 

1.0 for  = 0.5 in figure 4, and at this time, Subsection integral 

method is not applicable. After a certain investigation, the 

reason is the oscillation of Bessel function, when R/H is small, 

the value of Bessel function decays very slow. It is impossible 

to evaluate the Green function by Subsection integral. On the 

other side, the Gauss-Laguerre(Improved) integral also may 

lose precision during R/H > 10.0 in figure 5. But this kind of 

error is no matter to obtain the accurate value of Green function 

for it could use series solution to evaluate the Green function 

and its derivatives when R/H > 0.5 which has included the case 

R/H > 10.0. 
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Figure 4. Green function and its derivatives 

( H = =0.5, / 0.5z z H= = − , / 0H = = ) 
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（b） H = =15.0 

Figure 5. Green function G0 ( / 1z z H= = − , / 0H = = ) 

The following figures present the values of Green function and 

its derivatives during R/H approaching zero, which shows the 

two methods proposed in the paper has the same results, but 

series solution has difference with them. Additionally, it needs 

300 terms in series solution to obtain proper result during R/H = 

0.02, which is time-consuming.  
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Figure 6. Green function and its derivatives 

( H = =7.0, / 0.9z z H= = − , / 0H = = ) 

Furthermore, the above numerical results have shown that the 

series solution not only could obtain precise values of Green 

function and its derivatives during / 0.5R H  which is just 

same as reference [3], but also could obtain the precise value 

during 0.1 / 0.5R H  . The series solution only needs term 
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number of  6 /H R . When 0.1 /R H ,  6 / 60H R  . The data 

from the below table have illustrated the efficiency is very high 

in the case. The total time-consuming of evaluating Green 

function and its derivatives are shown in table 1 by the methods 

of Subsection integral, improved Gauss-Laguerre integral and 

series solution, and the series solution has used 60 terms. The 

data in the table 1 show that the series solution is fastest, 

followed by improved Gauss-Laguerre integral, the Subsection 

integral is slowest. On the other side, the term number of series 

solution would increase by the decrease of /R H . When the 

term number is more than 300, the series solution would be 

slower than improved Gauss-Laguerre integral; meanwhile the 

former numerical results have shown that the series solution has 

lost precision in near-field of / 0.02R H  .Thus it should adopt 

Gauss-Laguerre integral to calculate the value of Green function 

and its derivatives. 
Table 1. Calculating velocity 

Type 
Subsection 

integral 

Improved 

Gauss-Laguerre 

Series 

solution 

(60terms) 

Time-

consuming(ms) 
1.061 0.265 0.063 

 

4 CONCLUDING REMARKS 
The key of solving hydrodynamics of floating structures is to 

evaluate Green function and its derivatives. Generally, the 

integral form is adopted in near-field and the series solution is 

adopted in far-field. The calculating precision is compared 

among some methods, and which has verified that the two 

methods proposed in the paper could obtain the accuracy value 

of Green function and its derivatives in most cases. Then it’s 

found that the series solution could not obtain precise value 

when H  is large. At this time it should adopt Subsection 

integral and improved Gauss-Laguerre integral. The series 

solution also would lose precision during R/H approaching 

zero. At this time it should adopt improved Gauss-Laguerre 

integral proposed by the paper. Although the two methods 

proposed in the paper could evaluate the value of Green 

function and its derivatives correctly, the method may lose 

precision in some special cases. For example, the method of 

Gauss-Laguerre integral may have a certain deviation when R/H 

is large. And the method of Subsection integral may lose 

precision when H  is large. Thus considering the precision 

and time-consuming in evaluating the Green function and its 

derivatives, one strategy has been given, that is the method of 

Gauss-Laguerre integral should be adopted when R/H < 0.1, 

and series solution is adopted when / 0.1R H  . 
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